Every child deserves a happy childhood

Three girls fountain in Mainz Germany

Last year I have selected this photo of a lovely fountain capturing 3 girls under umbrellas (Drei-Mädchen-Brunnen) in Ballplatz Mainz in support of #ChildhoodCancerAwarnessMonth. This fountain was built between two Catholic girl’s schools symbolising the separate education and a happy childhood. It is charming on its own. And I’ve select it again.
Every child deserves a happy childhood. Raising awareness about childhood cancer we help to make the dreams of children with cancer come true. Dreams for a happy childhood, better treatment, better quality of life full of love ahead through better funding of childhood cancer research and access to innovative treatments.

September is Childhood Cancer Awareness Month!

Today marks the start of Childhood Cancer Awareness Month.

Three girls fountain in Mainz Germany 

The cause of childhood cancers is believed to be due to faulty genes in stem cells that give rise to nerves, skin, blood and other body tissues. For some unknown reasons, the faulty genes can sit quiet and show their ‘bad’ character after birth and programme the cells into cancer cells.
So, there is no evidence that links lifestyle or environmental risk factors to the development of childhood cancer, which is opposite to many adult’s cancers.

Every 100th cancer patient is a child. Cancer is the 2nd most common cause of death among children after accidents.

Children are not little adults and so their cancer. Some childhood cancers have a good outlook and successful protocol of treatments. However, some of the cancers do not respond to the known drugs, or if respond cancer cells find the way to develop resistance and come back being more aggressive. Among theme are some forms of brain tumours, neuroblastoma and sarcomas; cancers developing in certain age groups and/or located within certain sites in the body, along with acute myeloid leukaemia (blood cancer). Children with a rare brain cancer – diffuse intrinsic pontine glioma survive less than 1 year from diagnosis. Children with soft tissue tumours have 5-year survival rates ranging from 64% (rhabdomyosarcoma) to 72% (Ewing sarcoma). Less than50% of children with the aggressive form of neuroblastoma will live beyond 5 years with current treatment strategies.

For majority of children who do survive cancer, the battle is never over. Over 60% of long‐term childhood cancer survivors have a chronic illness as a consequence of the treatment; over 25% have a severe or life-threatening illness.

The most common types of childhood cancer are:

  • Leukaemia and lymphoma (blood cancers)
  • Brain and other central nervous system tumours
  • Muscle cancer (rhabdomyosarcoma)
  • Kidney cancer (Wilms tumour)
  • Neuroblastoma (tumour of the non-central nervous system)
  • Bone cancer (osteosarcoma)
  • Testicular and ovarian tumours (gonadal germ cell tumours)

Please see a short video The Childhood Cancer Ripple Effect created by St. Baldrick’s Foundation.

Research Summer School 2018

Another year, another Research Summer School students. We are hosting 4 students (Jessica, Dawn, Dola, and Jeff) this year. Some of them will be medical doctors, another will do research after the graduation. For them, the 8-weeks lab placement is a window into the reality of the everyday science. How cancer cells look? How do they grow? Where do we store them? How do we know that we have identified a new drug or a new target to study further? Do researchers have a sense of humour? Do they like donuts?

Why do they wear these astronaut helmets?

We have already said Good Bye to Jessica. Dola and Dawn’s projects are coming to an end this week, while Jeff is staying till the end of August.

A new, three-dimensional approach to cancer research

Appeared in today’s Irish Times. Lovely crafted by Dr. Vanesa Martinez

Although the discovery could be applicable in principle to any a solid tumour, Dr Piskareva’s target is neuroblastoma, a relatively common child cancer which affects a specific type of nerve cells in unborn children. “It’s quite aggressive and unfortunately there are many children who have metastasis when they are diagnosed, and this is the most challenging group to treat.”

Irish Times, 31 May 2018

https://www.irishtimes.com/news/science/a-new-three-dimensional-approach-to-cancer-research-1.3505347

8th OLCHC RESEARCH & AUDIT CONFERENCE

This was our 2nd time attending the OLCHC Research & Audit Day on May 25th, 2018. The conference provides a great forum for paediatric clinicians to share and update knowledge across different specialties through talks and poster presentations. It is insightful for basic biomedical researchers like us to see other perspectives.

I was delighted to know that two our studies were shortlisted. It is a rewarding feeling to see your Dream Team doing very well. One was the project of the Erasmus+ student Hanne Pappaert and the other was the project of NCRC funded Postdoc John Nolan. Hanne explored our 3D tissue-engineered model of neuroblastoma using collagen-based scaffolds with distinct mechanical properties. These new scaffolds were designed and manufactured by our collaborator Dr Cian O’Leary from Pharmacy Department and Tissue Engineering and Research Group (TERG) headed by Prof Fergal O’Brien. Hanne grew 5 neuroblastoma cell lines on the 3 scaffolds: hard like a rock, soft and fluffy like a cotton wool and a jelly-like. All cells liked the jelly-like environment. This environment is similar to bone marrow – the most common site of neuroblastoma metastasis. We were excited to see the difference as it means we are one step closer to reconstruct this type of tumour spread.

John has expanded our exploration of our 3D neuroblastoma model by examining the content of exosomes – little parcels sent by cancer cells in 3D and as tumours grown in mice.  We were thrilled to see a high similarity in the exosomal content. This finding additionally proved the great applicability of our 3D model as a tool to study neuroblastoma.

 

Groundwork

Though the official announcement is scheduled for the first week of June, the groundwork is on. Lots of reading and planning for the trip to Johns Hopkins later this year. One of the first is the book by Rebecca Skloot ‘The Immortal Life Of  Henrietta Lacks”. The famous HeLa cells were generated by researchers at JH. The story is a fascinating journey for biomedical scientists and a tragedy for the Lacks family.

How current IT advances help in research?

Here is the perfect example of the teamwork troubleshooting protein extractions. My Dream Team 2018 in action. The current information and communication technologies allow to stay connected and respond quickly.

Five minutes later in the lab: troubleshooting is the exchange of experiences!

 

A new 3D strategy to study neuroblastoma

Our body has 3 dimensions: height, width and depth. Every single part of our body grows in the same 3 dimensions. This is true for cancer cells. Researchers use different ways to study cancer cells behaviour, how they grow and spread. We grow cells in the flasks, where they change their structure and shape and become flat losing one dimension. This is a very popular approach. We also grow cells in mice, where cells keep their 3D shape and mimic their behaviour to one observed in humans.

It is well known that we need to give a different amount of drug to kill cancer cells grown in flasks and in mice. This, in turn, delays the development of new drugs. Why does it happen this way? So, the drug works only on one side of the cell when they grow on the flat surface. In contrast, in mice, drug surrounds the cancer cell habitat and attacks cells at the edge first and then getting to those at the core. So we need more drug to kill cancer cells in mice.

We decided to design a new way to grow cancer cells that recreate their growth in 3 dimensions as in the human or mice body. We used special cotton wool like sponges as a new home for cancer cells and populated them with cancer cells. At the next step, we gave cells the drug at the different amount and checked what happened.

To understand cell fitness we stained them with red and blue dyes. On the left bottom side of the image, we see an equal amount of red and blue dyes telling us that cells were healthy and fit. Cells did not get any drug. When we gave a little amount of the drug but enough to kill cells in the flask, the balance of red and blue dyes was the same telling us that nothing really happened (the image in the middle). Cells were feeling well and healthy. The right bottom image has only blue dye. In this case, cells were given the amount of drug enough to destroy cancer cells in mice or humans. The lack of red dye tells us that this time the drug worked and killed the cancer cells.

We found that the drug killed cells on sponges only at doses enough to do the same in mice.

So, we concluded the new tactic to grow cancer cells in 3D on cotton-like sponges can bridge the gap between traditional way and animal models. This new strategy to grow cells on sponges should help to understand cancer cell behaviour better and accelerate the discovery and development of new effective drugs for neuroblastoma and other cancers. This, in turn, will make the outlook for little patients better and improve their quality of life.

This work has been published in Acta Biomaterialia and presented recently at the Oral Posters Session at the 54th Irish Association for Cancer Research Conference 2018.

This study was supported by Neuroblastoma UK and National Children’s Research Centre.

You can find more at

A physiologically relevant 3D collagen-based scaffold–neuroblastoma cell system exhibits chemosensitivity similar to orthotopic xenograft models.

IACR Meeting 2018 Programme

How is it feeling?

The fact of being shortlisted is very encouraging. It means that my research proposal and the career achievements fit the merit of this award.  No doubt it was fantastic experience overall, not often the shortlisted candidates have an opportunity to speak for themselves.

How is it feeling after the interview?… Well, I do not have a firm answer… It is a big difference when you explain yourself in written and spoken forms… No chance to edit your real-time talk… How many times have that 30 minutes played back and re-run in my head? I lost the count… Did I bring the point across? Did I do things in right time and at a right pace? Should I have structured the answer differently? Each re-run brings new ways to answer the same questions, indeed, in a better and more concise way…   Having the mind that is constantly analysing the situation is not helpful.

Think, the competition was very tough, and only 1 in 10 made to the 2 days interview for the Fulbright Award (maybe the ratio even higher). Twelve candidates were interviewed yesterday and the same numbers are to be today.  What are the chances to get to the final? I have to wait until March… and meanwhile, keep applying for grants and doing something meaningful.

My next stop is at the Irish Cancer Society this Thursday to film a short video about my research and neuroblastoma challenges. The video should be available for the International Childhood Cancer Research Day on February 15th.