#JournalClubwithFederica:How small RNAs contribute to neuroblastoma biology

We’ve recently started a new journal club series focusing on papers published by our research group over the past few years. The paper I chose is titled “A Context-Dependent Role for MiR-124-3p on Cell Phenotype, Viability and Chemosensitivity in Neuroblastoma in vitro“. It explores the anti-cancer potential of miR-124-3p in neuroblastoma.

Neuroblastoma is particularly challenging to treat, especially when tumours become resistant to chemotherapy. This resistance is compounded by tumour heterogeneity—these cancers comprise different cell types, specifically adrenergic and mesenchymal cells. This variability affects treatment responses and plays a role in metastasis and how aggressively the cancer can spread.

MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression, and miR-124-3p has emerged as a promising player in cancer research. A Kaplan–Meier plot in the study (Figure 1) shows a strong association between low miR-124-3p levels and poorer survival rates in neuroblastoma patients, underscoring its potential impact on patient outcomes.

Our group’s study specifically examined how miR-124-3p might help reverse chemotherapy resistance and inhibit tumour cell growth in neuroblastoma. Excitingly, it has the potential to reduce cancer cell survival and increase their sensitivity to chemotherapy—an important breakthrough for treating resistant neuroblastomas.

The study found that miR-124-3p directly targets genes involved in the epithelial-to-mesenchymal transition (EMT), a process that makes cancer cells more invasive and treatment-resistant. By suppressing these genes, miR-124-3p can reverse EMT, shifting cells to a less aggressive, more treatment-sensitive state. Our group observed that increased miR-124-3p significantly reduced neuroblastoma cell invasion (Figure 2). In SK-N-AS cells and their drug-resistant form, invasion dropped by 50% and 70%. In Kelly cells and their resistant form, invasion decreased by 10% and 30%. The most invasive of all, the drug-resistant SK-N-ASCis24 cells, showed the most substantial decrease in invasion after miR-124-3p treatment. This suggests that miR-124-3p could help limit neuroblastoma spread, highlighting its therapeutic potential.

While miR-124-3p isn’t part of my project, seeing how different molecular mechanisms can be harnessed to develop cancer therapies is always inspiring. Using miRNAs to sensitize resistant cancer cells to treatment could complement approaches like immunotherapies or vaccines, like the one I’m working on. Understanding these molecular pathways brings fresh perspectives on weakening cancer cells and making treatments more effective.

Written by Federica Cottone

National PPI Festival 2024: Let’s Talk About Childhood Cancer Research

The RCSI Cancer Bioengineering Group hosted an in-person event during the National PPI Festival 2024 to share their childhood cancer research and connect with the public and patients.

We welcomed members of the public, family members of children with cancer, researchers, clinicians, and patient/community organisations on October 17th. Our past lab members and students paid a visit, too! Our group shared ongoing research on neuroblastoma biology and finding new treatments. Prof Cormac Owens from CHI brought us through the journey of clinical trials in neuroblastoma patients. We heard the heartbreaking story of the brave young man who lost his life to neuroblastoma and his parents who never gave up. This truly inspirational family founded a charity – the Conor Foley Neuroblastoma Cancer Research Foundation, to support curiosity-driven and translationally-focused research. The Foleys know very well how important it is to return happy days to kids and their families.

We thank RCSI PPI Ignite for supporting us!

Stay in touch!

September – Childhood Cancer Awareness Month, 2024

Cancer is the 2nd most common cause of death among children after accidents. 

Childhood cancer is an umbrella term for many other types of this disease. Every September, many charities, researchers and parents of children with cancer work hard to raise awareness of this cancer. You may learn more about kids with cancer, their loving families, the doctors and caregivers who look after them and treat them, the young survivors of cancer and those kids and teens who lost their battle, and the scientists who work hard to find a way to stop childhood cancer.

This year, our research team will run the Pub Quiz on September 18th, 2024, in honour of Childhood Cancer Awareness MonthAll donations will go to the Conor Foley Neuroblastoma Research Foundation (CFNRF).

If you would like to get involved in this amazing challenge and help us raise vital funds for childhood cancers, you can contribute to our fundraising page:

#JournalClubwithRabia: How Can Fish Help Us Study Anticancer Drugs?

Hi all! Rabia here, I came across an intriguing paper highly relevant to my work on the rapid in vivo validation of HDAC inhibitor-based treatments using neuroblastoma zebrafish xenografts. The study outlines a zebrafish neuroblastoma yolk sac model specifically designed to evaluate both the effectiveness and toxicity of histone deacetylase (HDAC) inhibitors.

HDAC inhibitors are drugs that target specific enzymes involved in gene regulation. This study tested broad-spectrum HDAC inhibitors as standalone treatments and combined them with doxorubicin, a well-known chemotherapy drug.

But why on Zebrafish? The zebrafish model provides a rapid and efficient means of testing these treatments, offering valuable insights into their potential use in combating neuroblastoma. This model allows for assessing drug efficacy and helps understand the associated toxicities quickly, making it a powerful tool for developing new anti-cancer therapies.

In the study, fish larvae were implanted with fluorescently labelled, well-established neuroblastoma cell line (SK-N-BE(2)-C) and patient samples (HD-N33, NB-S-124) to grow tumours. Non-cancerous cells (VH7 fibroblasts) were utilized to verify that tumour progression in zebrafish was specific to tumour cells. The engraftment of human cells into fish larvae was confirmed by immunohistochemistry (IHC) staining on zebrafish sections injected with neuroblastoma cells (SK-N-BE). This was achieved using a STEM121 antibody that reacts specifically with a human cytoplasmic protein. The findings showed that pediatric tumour cells survive and grow in the zebrafish model at rates like those observed in human tumours.

Before testing drug efficacy in zebrafish xenografts, optimal drug concentrations and maximal tolerated doses (MTD) were determined. Toxicity tests were conducted by treating fish larvae cells for three days without tumour cell injection to identify the maximum tolerated dose that did not cause observable morbidity, changes in morphology, or severe aberrations in larval behaviour. and lethal dose (LD) for each compound. To find optimal drug concentrations, larvae with xenografted tumour cells were incubated with increasing drug doses 24 hours post-implantation to the maximally tolerated dose (MTD). The relative IC50 values were then determined based on changes in tumour mass volume.

To evaluate the treatment, SK-N-BE(2)- cells were used to test the broad-spectrum HDAC inhibitors, including panobinostat, vorinostat, and tubastatin A, both alone and combined with doxorubicin. The partial response rate (PR) was measured to see how well different drug combinations work to shrink tumours in the zebrafish model. Here’s what they found: Doxorubicin combined with panobinostat resulted in a 23% PR, Doxorubicin combined with tubastatin A showed a 31% PR, and Doxorubicin combined with vorinostat achieved the best result with a 36% PR.

To test the effectiveness of the HDAC inhibitor treatment, they monitored the tumour growth using a confocal microscope before and 48 hours after giving the drug. The test revealed that a 48-hour treatment of SK-N-BE (2)-C zebrafish xenografts with vorinostat and doxorubicin alone, `and in combination, increased cell death. The combination of these two drugs was the most effective, causing a significant increase in cancer cell death (apoptosis) by decreasing cell proliferation, as indicated by reduced PPH3 marker and activating the number of Cleaved caspase-3 (Figure 1).

Figure 1: Treatment for 48 h with Vorinostat, doxorubicin, or a combination of both increased the amount of cleaved caspase-3 and reduced mitotic tumour cells. Adapted from Pharmaceuticals 202013(11), 345

In essence, this study validates the use of HDAC inhibitors in treating neuroblastoma and paves the way for broader applications of zebrafish models in cancer research. As we look to the future, these innovative models could significantly enhance our ability to develop effective cancer therapies, making strides towards better treatments and, ultimately, more effective cures.

Written by Rabia Saleem

#JournalClub with Shreya: Modelling Brain Tumour Spread

This article by Krieger et al. discusses the most common form of brain cancer called glioblastoma. Due to its highly aggressive nature, research must be conducted consistently and rapidly to develop new treatments. This has proven challenging due to primary tumours being resected before further research can be done, as well as the lack of current technologies to fully explore relationships between GBM and surrounding brain tissues. This study aimed to study the aforementioned interactions in under 4 weeks, accounting for the rapid progression of the disease in real life.  

GBM cells were first derived from four patients and treated with glutamine, heparin, epidermal and fibroblast growth factors, then underwent a sequence of manipulations, such as second-generation replication lentivirus infection of GBM cells, iPSC line 409b2 inoculation in Aggrewell plates and later manipulation with invasion assays, and scRNA sequencing, which, along with the Aggrewell cells, produced neural progenitor cell spheroids for analysis. Confocal microscopy and the developed image processing algorithm allowed for visualization of these cells following fluoroscopy and depicted consistent growth of tumour cells. There was also the growth of microtubules. Any dissociated organoids were then co-cultured with GBM cells again, promoting interaction between the two. Further analysis revealed the upregulation of 45 genes, including PAX6, GJA1, GPC3, and others involved in cell regulation.  

Credit to Teresa G Krieger, Stephan M Tirier, Jeongbin Park, Katharina Jechow, Tanja Eisemann, Heike Peterziel, Peter Angel, Roland Eils, Christian Conrad, Modeling glioblastoma invasion using human brain organoids and single-cell transcriptomics, Neuro-Oncology, Volume 22, Issue 8, August 2020, Pages 1138–1149

In conclusion, this novel mechanism of analysis of GBM cells using Aggrewell plates provided fruitful results, indicating intricate relationships between GBM cells and organoids, providing crucial insight for treatments by elucidating specific gene expression, heterogeneity of cells, and offering new targets based on ligand-receptor interactions. The particular relevance of this study to my work is regarding the usage of Aggrewell plates, which I am currently studying to determine how best to keep cells growing successfully within the wells. This article proves the usability and efficiency of Aggrewell and establishes its crucial role in the realm of brain cancer treatment research.  

Written by Shreya Sankar

#JournalClub: Anti-Cancer Immunotherapy

Hi there, Federica here! In the fast-paced world of scientific research, staying informed about the latest studies and breakthroughs is crucial. It enables researchers to build upon existing knowledge, avoid redundant efforts, and discover new directions for their work. That’s why we’ve started a new series of blog posts highlighting recent papers and explaining their significance for our research.

Recently, a fascinating study explored an innovative method to boost the effectiveness of cancer immunotherapy: “A combination of a TLR7/8 agonist and an epigenetic inhibitor suppresses triple-negative breast cancer through triggering anti-tumour immune“.

The researchers investigated a combination of immune checkpoint blockade (ICB) and other drugs to turn “immune-cold” tumours (which evade the immune system) into “immune-hot” tumours (which the immune system can attack). They developed a special delivery system using nanoparticles called metal-organic frameworks (MOFs). These nanoparticles were loaded with two types of drugs—a TLR7/8 agonist and an epigenetic inhibitor (BRD4 inhibitor). To make the nanoparticles even more effective, they were coated with vesicles from the cancer cells themselves. This coating helps the nanoparticles specifically target cancer cells.

But how does it work?

The nanoparticles are designed to find and enter triple-negative breast cancer (TNBC) cells. Once inside, the drugs prompt the cancer cells to break apart and release signals that alert the immune system. These signals attract dendritic cells, which then activate CD8+ T cells—the body’s natural cancer fighters. The TLR7/8 agonist further enhances this immune response, making the treatment more powerful.

In both laboratory tests and animal models, this method showed significant promise. It not only slowed down tumour growth but also improved the body’s immune response to cancer. Importantly, the study found that this approach could remodel the tumour environment, making it more hostile to cancer cells. For example, they wanted to verify that their combined delivery system could really boost the body’s ability to fight tumours. They focused on a protein called calreticulin (CRT) that, when it shows up on the surface of tumour cells, helps the immune system spot and remove them. They found that when they used their special delivery system (CM@UN and MCM@UN), the levels of CRT on the surface of tumour cells went way up. This was especially true for the MCM@UN group, showing just how powerful their method was in getting the immune system to attack the tumours.

The original image was published in J Nanobiotechnology. 2024; 22: 296.

So, why is this study important for my work?

The principles of enhancing the immune system’s ability to fight cancer are central to both the research in the study and in my project. Like the nanoparticles in the study, mRNA vaccines can be designed to specifically target cancer cells, ensuring that the treatment reaches its intended destination. Another similarity is how the drugs activate the immune system, which parallels how mRNA vaccines work—by training the immune system to recognise and attack cancer cells.

I find this study really interesting as it sheds light on innovative strategies for cancer treatment and provides valuable insights that can inform and inspire our research on developing mRNA vaccines for childhood neuroblastoma!

Written by Federica Cottone

International Childhood Cancer Day – 15 February 2024

We are celebrating #ICCD2024 with a Bake Sale and a Quiz. To earn a piece of cake, you have to answer a question correctly! Have a look at some:

  • Which civilisation first described cancer?
  • Where did the word cancer come from?
  • Do children get cancer?
  • What is the most common type of cancer in children?
  • Can the Human Papillomavirus (HPV) vaccine prevent cancer?
  • Can neuroblastoma begin to develop before birth?
  • What is the name of the nerve cell in which neuroblastoma begins to grow?
  • Can a child have a genetic predisposition to neuroblastoma?
  • What % stands for the incidence of neuroblastoma: 8 or 15?
  • What % stands for the neuroblastoma-related deaths: 8 or 15?
  • Does neuroblastoma first appear in the brain?
  • What does the letter N stand for in the gene MYCN?
  • How often does childhood cancer occur compared to adults?
  • How often does hereditary cancer happen in general?
  • Do you think that children are small adults when we talk about anticancer treatment?

Knit-A-Thon 2023 Results

A wonderful day of knitting – Knit-A-Thon-2023 raised 913 euros. A massive thank you to everyone who stopped by and donated on the day and beyond. Every cent counts! The money was split evenly between our four chosen charities: The Conor Foley Neuroblastoma Research Foundation (CFNRF)Neuroblastoma UK (NBUK)Oscars Kids and Childhood Cancer Ireland (CCI). These charities were established and are run by parents, some of whom lost their children to cancer. They continue their children’s legacy, doing an amazing job of advocating for children with cancer and better funding for research and aftercare.

Knit-A-Thon 2023

And a special thank you to Ciara’s mam Aggie for the amazing handmade raffle prizes (chromosomes, antibodies, cup holders and many more) and a Master class on the day! We thank Jenny Duffy (RCSI Events and Communications Coordinator) for her time crocheting with us and for us!  Thanks to Anggie’s and Jenny’s skills, there were lots of mascots to win – and many of them collected already. We much appreciate the support from the RCSI Estates and Porters who looked after us on the day.

Go Raibh Maith Agat!!!

MANY THANKS FOR YOUR BIG HEARTS!!!

Knit-A-Thon 2023


We are the Cancer Bioengineering Group, and September is a very special month for us as it is Childhood Cancer Awareness Month. Childhood cancer is the 2nd leading cause of death in children after accidents. Our group researches childhood cancer neuroblastoma, a cancer of immature nerve cells. Despite intensive multimodal treatment, as many as 1 in 5 children with aggressive neuroblastoma do not respond, and up to 50% of children that do respond experience disease recurrence with many metastatic tumours resistant to many drugs and more aggressive tumour behaviour that all too frequently results in death.

This is what we want to change! We believe that every child deserves a future, and our team of postgraduate researchers led by Dr Olga Piskareva is dedicated to strengthening our knowledge of this disease and identifying new potential ways to tackle it, as well as taking part in fundraising activities so our group and others can continue with this research.  

On Tuesday, the 19th of September, we are running a Knit-A-Thon using gold and purple yarn to mark childhood cancer and neuroblastoma, respectively. Our patterns are inspired by Neuroblastoma UK and Mr Google, indeed.

This year, we honour 4 charities that are doing an amazing job of advocating for children with cancer and better funding for research and aftercare. Therefore, the donations we receive will be split equally among The Conor Foley Neuroblastoma Research Foundation (CFNRF), Neuroblastoma UK (NBUK), Oscars Kids and Childhood Cancer Ireland (CCI). If you would like to get involved in the Knit-A-Thon and help us raise vital funds for childhood cancers, come along on the day and make a donation to these wonderful charities.

On the day, RCSI 123 SSG will #GoGold in support of this cause. Please come by to see the RCSI building lit up and share your pictures on social media with the hashtag #ChildhoodCancerAwarenessMonth to raise awareness.

Ready, Steady, Go!

Every year we manage to raise an amazing 1500-2000 euros by organising a new challenge. We are eager to surpass that target this year. All donations no matter how small are appreciated at GoFundMe.

Growing cancer cells in 3D

Hi there, Ciara here again, a final-year PhD student in our research group. I can’t believe September has rolled around again, meaning one thing: it’s Childhood Cancer Awareness Month (CCAM). In honour of this month, I would like to tell you a little bit about the childhood cancer we study in our lab and the research that I do to one day help save children from this disease. 

Neuroblastoma is an aggressive childhood cancer, with sadly only 20% of late-stage patients surviving after 5 years. Progressive disease and cancer relapse are common in neuroblastoma. This is due to standard treatment regimens not being adequate for treating high-risk patients. Current treatment also may cause a series of adverse reactions in patients. Therefore, my research focuses on developing a 3D model of high-risk neuroblastoma that models the cancer more accurately in a laboratory setting. This will act as a beneficial platform to test whether new therapies effectively fight the patients’ cancer cells, leading to better treatment options for children with neuroblastoma.  

Below is a picture of how we grow these cancerous cells on our 3D model and visualise them with fluorescent stains. When we can see them like this under a microscope, we can study how they move and grow to help us understand how to treat them. 

Here, we can see the cells growing on our 3D cancer model. This image is magnified by 200 times to be able to see the individual cancer cells. The green stain is the outside of our cancer cells, or we use the term, the cell membrane. The blue is the inside, or as some of you may know the term, the nucleus of the cell.   (It is amazing what we can see with the power of microscopes, right?) 

As you may know, every year, we support amazing charities by raising vital funds to keep the fight against childhood cancer going. Keep your eyes peeled on our Twitter for updates on what crazy activity we have committed to this year!!  

Written by Ciara Gallagher