Women in Science: Mary Golda Ross

A woman from a background of adversity cannot be shaken when confronted with resistance. Mary Golda Ross was, “the kind of person who would walk through a door and stick in her foot to make sure that it stayed open for others”. She followed her passion and held her own to become the first Native American female engineer in the 1940s. Ross was a pioneer of rocket science and was an integral part of, still to this day, classified research on interplanetary space travel.

Mary Golda Ross was the great-great-granddaughter of John Ross, the chief of the Cherokee nation. About 70 years before Mary was born, John was tirelessly resisting the seizure and erasure of Cherokee lands and culture by the U.S. Government. In 1838, due to the Indian Removal Act, tens of thousands of Cherokee were forcibly removed from their homes and forced to march over 1,200 miles (about 1,930 kilometers) into present-day Oklahoma. Thousands died during the journey. Mary was born in Park Hill, Oklahoma in 1908. As a student in the Cherokee Nation, Mary was very bright and caught on to mathematics quickly. During her university classes, Mary was ostracized for her interest in STEM as she found herself alone on one side of the classroom with the men on the other. As was the case with many women in science at the time, she both learned and excelled academically with a massive lack of support.

After receiving her bachelor’s degree, Mary held teaching positions and became a statistical clerk at the Bureau of Indian Affairs. While working, she took astronomy classes at the present-day University of Northern Colorado and earned her master’s degree in mathematics in 1938. A full 100 years after the Trail of Tears. Soon after, World War II had started and Mary moved to California to help with the war efforts, as 1 in 4 women worked outside the home during this period. She was hired as a mathematician in 1942 by Lockheed Aircraft Corporation, an aerospace engineering company. Her first project was analyzing the effects of pressure on the design of the P-38 Lightning, the fastest fighter jet in the world at the time, reaching speeds of 400 mph (640 km/h) in a level flight. Mary’s ambition did not stop there as she began to wonder how to become involved in space travel.

When the war ended, Lockheed saw her brilliance and sent her to UCLA where she earned a professional certification in engineering in 1949. Carrying on her engineering work in 1952, Mary helped found Lockheed’s Advanced Development Program, otherwise known as Skunk Works. She was the only woman engineer on this team, and most of the research from this program is still classified. However, it is known that Mary developed technology for space exploration and orbiting satellites. Mary’s work also helped develop the Agena spacecraft used in the Gemini and Apollo space missions. In 1966, Mary was a primary author for NASA’s Planetary Flight Handbook Vol. III, a still relevant source for space travel. Even suggesting the possibility of travelling to Mars and Venus.

Mary retired in 1973 and was influential in both the American Indian Science and Engineering Society and the Society of Women Engineers. She worked hard to encourage increased participation of Native American youth in STEM fields. As of 2021, there are less than 1% of Native Americans that comprise the STEM workforce; only 2% of the U.S. population is Native American. She advocated for more resources offered to Native Americans interested in STEM and increased knowledge of her ancestors’ history. Mary attended the 2004 opening of the Smithsonian National Museum of the American Indian in Washington, D.C., wearing a traditional Cherokee dress. Upon her death in 2008, Mary endowed the museum with $400,000. Mary had told the Los Altos Town Crier, “The museum will tell the true story of the Indian – not just the story of the past, but an ongoing story”. Mary had dreams that reached the stars, and she never stopped chasing them. She trailblazed a path for those who followed in her footsteps to find a way, no matter what barriers were present.

Written by Alysia Scott.

Women in Science: Dr. Nina Marie Tandon

Throughout history, women in science have faced the hard challenge of navigating societal biases and limited opportunities in their pursuit of scientific discovery. Many of them were unjustly denied access to education and research positions just because of their gender, as it was thought that women were not capable of rigorous scientific work.

In the present, women in science (and in many other fields) still need to face many obstacles and challenges:

  1. Gender Bias: Women in science still encounter bias and stereotypes that can hinder their progress. They may face scepticism about their abilities and qualifications, leading to a lack of recognition for their work. Gender bias can also manifest in subtle ways, affecting opportunities for advancement and funding.
  2. Unequal Pay: Gender pay gaps persist in many scientific fields, with women often earning less than their male counterparts for similar work and qualifications.
  3. Limited Representation in Leadership Roles: Women remain underrepresented in leadership roles within academia, research institutions, and industry.
  4. Work-Life Balance: Balancing a career in science with family responsibilities can be particularly challenging for women. The demands of research, long working hours, and frequent travel can conflict with traditional gender roles and family expectations.

A woman and scientist who has certainly not let herself be stopped by all these adversities is Dr. Nina Marie Tandon. She has been a key player in the field of biomedical engineering, tissue engineering, and regenerative medicine. Her work focuses on developing innovative methods to grow artificial organs and tissues, using patient’s own cells to engineer tissues and organs. One of the cornerstones of Tandon’s work is the use of induced pluripotent stem cells. iPCs were developed in Japan pretty recently and are derived from skin or blood cells that have been reprogrammed back into an embryonic-like pluripotent state. This enables the development of an unlimited source of any type of human cell needed for therapeutic purposes.  

Tandon and her team employ cutting-edge bioreactors and 3D printing techniques to construct tissues: bioreactors provide a controlled environment for cells to grow and develop into specific tissue types, while 3D printing technology is used to create complex structures that mimic the architecture of natural organs.

In 2013, Tandon co-founded EpiBone, a biotech company that specializes in growing personalized bone grafts. EpiBone employs patient-specific stem cells to create skeletal structures based on individual DNA profiles, reducing the risk of rejection, streamlining surgical procedures, and potentially expediting patient recovery. They use a three-step process that begins with obtaining bone measurements and stem cells from abdominal fat via a CT scan, followed by creating a bone model in a bioreactor to stimulate growth. Finally, the patient’s own stem cells are added to the newly developed bone in the bioreactor, resulting in a fully functional replica bone ready for use.  Nina Tandon is also known for her engaging and informative TED Talks, where she discusses the future of medicine, tissue engineering, and the impact of regenerative medicine on healthcare.

I really admire Nina’s work, which I find genuinely fascinating. I believe her passion and determination come through in her TED talks, where she effectively manages to communicate complex scientific concepts and the potential of regenerative medicine to a broad audience.

Click on the image to listen to one of her TED talks. Enjoy it 🙂

Written by Federico Cottone

Women in Science: Rosalind Franklin

On a blog post series of Women in Science by a Cancer Bioengineering lab, you didn’t think you were going to get around reading about Rosalind Franklin, did you? In recent years, she finally started to receive the acknowledgement she is owed, placing her all the way up there in terms of famous scientists with Marie Curie and Albert Einstein.

As mentioned by Ellen last week, there were only ever 13 women to win the Nobel Prize in Physiology or Medicine. But in 1962, it was erroneously bestowed upon three men for the scientific breakthrough of a woman. This blog post would just as well fit into a true crime in science series.

All down to misogyny and a single piece of evidence: Photograph 51, an X-ray crystallography of the structure of DNA viewed perpendicular to the DNA fibre axis, revealing the double helix structure.

You will likely all remember James Watson and Francis Crick from biology classes in school. You were probably taught that they figured out the structure of DNA.

But at the same time, they worked together in Cambridge, Franklin was working together with her PhD student Raymond Gosling at Kings College in London. Forced to work alongside Maurice Wilkins, who did not take well to her confident, goal-oriented ways, which led her to criticise her well-respected peers and dared to interrupt and correct them.

Leading to her downfall in the race with Watson and Crick was that Franklin complied with her understanding of scientific ethics, and rather than rushing to publish her findings, she sought to verify them and replicate the findings in Photograph 51.

Betrayed by her colleague Wilkins after ample tensions over the years. He passes her priceless finding to the competition, allowing Watson and Crick to model the double helix, publish a breakthrough paper and relegate her to a methods paper in the same issue of the nature journal.

Tragically, her young death at 37 from ovarian cancer prevented her from witnessing the Nobel Prize being awarded for discoveries in the molecular structure of DNA four years later. Which in 1962 was not to be awarded posthumously. Instead, her reputation for years was dominated by the more than unflattering recollections in James Watson’s biography. The book clued the public into the crimes the three men committed. All the while tarnishing Franklin’s name, portraying wildly misogynistic images and downplaying her indisputable contribution to science. Only after society as a whole changed its views on women and misogyny did perceptions of Rosalind Franklin and James Watson finally get corrected.

Today, Rosalind Franklin’s legacy stands as a symbol of tenacity, intellect, and an unyielding spirit that will inspire generations to come. It is about time that science books get rewritten to remind us that those are the virtues we should hold in high regard. Rather than the yearning for glory and a legacy that we see in the pressure to publish, the chase of impact factors never intended to rank journals and scientists but as a tool for librarians and the impossible climb through academia, forcing impossible expectations on principal investigators to take on endless students and responsibilities. Let’s take this opportunity to refocus and make sure it’s the pursuit of knowledge and answering questions that drive science forward that determine our decisions.

Written by Ronja Struck

Women in Science: Madame Curie

Women have made significant contributions to the field of science throughout history, but they have often faced gender-based barriers and discrimination. Despite the challenges, several pioneering women made significant contributions to various scientific fields. Marie Curie, for example, conducted ground-breaking research in radioactivity and was the first person (and remains the only woman) to win Nobel Prizes in two different scientific disciplines (physics and chemistry). In 1903, she received the Nobel Prize in Physics along with Pierre Curie and Henri Becquerel for their work on radioactivity. Later, in 1911, she received the Nobel Prize in Chemistry for her contributions to the understanding of radium and polonium. These discoveries had a profound impact on the understanding of atomic and nuclear physics and laid the foundation for numerous scientific and medical advancements. They led the development of X-ray machines for medical diagnosis and the development of cancer treatment through radiation therapy (NobelPrize.org, 2023).

As a woman in the 20th Century, Madame Curie too faced early struggles with financial and gender-related challenges in her pursuit of education. She had to work hard as a governess and in other low-paying jobs to support her sister’s education before she could attend University. Her struggles continued into her research, where she first published her early scientific work under the pseudonym “Pierre Curie” to avoid gender bias and prejudice. This allowed her to have her work taken more seriously. However, despite her struggles to receive an education, in 1906, Marie Curie herself became the first Female Professor at the University of Paris (MarieCurie.org, 2023)

Marie Curie not alone made epic contributions to science, she was also involved in war efforts. During World War I, Marie Curie developed mobile radiography units, or “Little Curies,” to provide X-ray services to wounded soldiers. She and her daughter, Irène, operated these units on the front lines. She also served as the director of the Red Cross Radiology Service and trained nurses and doctors in radiography (Davis, 2016).

Madame Curie passed away on July 4, 1934, in Sallanches, France, but her legacy in the world of science endures. Marie Curie’s personal cookbook and other belongings are still radioactive and are stored in lead-lined boxes at the National Library in Paris. They will remain radioactive for thousands of years. The Musée Curie (Curie Museum) is a museum located in Marie Curie’s former laboratory at the Institut du Radium in Paris. It showcases her personal artefacts, laboratory equipment, and documents related to her research on radioactivity. If you are holidaying in Paris, you can take an hour and explore the laboratory space and learn about the scientific achievements of Marie Curie and her husband, Pierre Curie. For me, Marie Curie’s dedication to research, numerous contributions to the field of radioactivity, and her status as a trailblazing woman in science is inspiring. I hope her legacy will continue to inspire generations of scientists and serve as a testament to the power of scientific curiosity and perseverance.

Fun fact: Radium became a popular element in various consumer products during the early 20th century. It was added to items like toothpaste, face creams, and even drinks, all of which claimed to provide health benefits. Marie Curie herself endorsed some of these products before the health risks of radiation exposure were well understood (Santos, 2021).

Written by Ciara Gallagher

Reading:

DAVIS, A. 2016. How Marie Curie Helped Save a Million Soldiers During World War I The radiology pioneer developed and operated mobile X-ray units to treat the injured. Available: https://spectrum.ieee.org/how-marie-curie-helped-save-a-million-soldiers-during-world-war-i [Accessed 2023].

MARIECURIE.ORG. 2023. Marie Curie the scientist [Online]. Available: https://www.mariecurie.org.uk/who/our-history/marie-curie-the-scientist#:~:text=Born%20Maria%20Sk%C5%82odowska,She%20never%20lost%20this%20passion. [Accessed].

NOBELPRIZE.ORG. 2023. Marie Curie [Online].  [Accessed 24/10/23 2023].

SANTOS, L. J. 2021. “A Revolutionary Beauty Secret!” On the Rise and Fall of Radium in the Beauty Industry. LitHub.

Women in Science: “I felt like a God”- Dr. Katalin Karikó

As many will know, the Nobel Prize for Physiology or Medicine 2023 was awarded jointly to Dr. Katalin Karikó and Dr. Drew Weissman in recognition of their contribution to the mRNA technology that laid the groundwork for the Covid-19 mRNA vaccine success. They found that replacing uridine with pseudouridine in mRNA molecules prevented over-activation of an immune response that would normally degrade and remove the mRNA. Combined with successful delivery to cells, this allowed for mRNA to be used as coding machinery to make new proteins in cells that don’t normally produce that protein. One small adjustment changed the landscape of mRNA technology and therapeutics.

Since the Nobel Prize announcement, it has come to light the many obstacles and rejections that Dr. Karikó adapted to over the course of her career and despite it all, was still awarded the most prestigious title in scientific research. Taking inspiration from this, we will run a new blog series to highlight female scientists, their work and what it is that we admire most about them. (Did you know? Only 13 of the 227 Nobel Prize Laureates for Physiology or Medicine were women!)

In her many interviews and discussions, it is obvious that Dr. Karikó has an exceptional positive mental attitude and, most importantly, lives and breathes for science. The title of this blog post, “I felt like a God”, is a quote from Dr. Karikó. Most people will think that it is a reaction to hearing she won the Nobel Prize. But no, it was Dr. Karikó’s reaction in the 1980s to seeing her mRNA inserted into cells and producing a new protein. Dr. Karikó was still working at the bench up until very recently, and this love for lab work and science is one quality that makes her stand out from the crowd. She shy’s away from the “fame” and focuses on “what’s next”. It is these qualities, I assume that meant she could push past the rejections that we know so well in academia and scientific research. Before her and Dr. Weissman’s work was noticed and valued by Pfizer and Bio-N-Tech, Dr. Karikó was let go from the University of Pennsylvania due to a lack of grant funding and struggled to attract interest from both industry and academia. In fact, major journals rejected Dr. Karikó and Dr. Weissman’s work on mRNA modifications, and it was finally published in a lesser-known journal, Immunity.

Rejections are something that every scientist becomes accustomed to, be they grant rejections, job rejections or even “idea” rejections. Dr. Karikó’s ability to firmly believe in her science and never let up is what I admire most about her. She was told so many times to “not bother” with RNA that it would never be used as a therapeutic. And now, her belief and self-confessed obsession with this molecule has contributed to the development of arguably the most ground-breaking therapeutic of the 21st century, the mRNA vaccine. Obviously, as an immunologist, I am biased. But it cannot be ignored how many lives Dr. Karikó’s ambition and determination have benefited.

Dr. Katalin Karikó working at her new desk as a newly-appointed Professor at her alma mater, the University of Szeged, Hungary. Picture courtesy of Dr Kariko’s Twitter account @kkariko.

As women in science, we face unique challenges. Dr. Karikó’s career is not what you would expect from a Nobel prize-winning scientist. It is not littered with tenured positions at Ivy League universities. She struggled for most of her career to get people to listen to her about the promise of mRNA. Moving from her home of Hungary to the United States with her husband and young daughter, Susan, who is now a two-time Olympic gold medallist. When asked how she juggled it all, Dr. Karikó explains how leading by example is the key. It is no wonder her daughter is as successful as she is when Dr. Karikó’s determination, perseverance and self-confidence were what she grew up watching. I truly admire Dr. Karikó’s ability to stand firm in the face of adversity. For me, she stands as a true role model for women scientists and embodies the success that resilience can bring. 

Written by Ellen King

Knit-A-Thon 2023 Results

A wonderful day of knitting – Knit-A-Thon-2023 raised 913 euros. A massive thank you to everyone who stopped by and donated on the day and beyond. Every cent counts! The money was split evenly between our four chosen charities: The Conor Foley Neuroblastoma Research Foundation (CFNRF)Neuroblastoma UK (NBUK)Oscars Kids and Childhood Cancer Ireland (CCI). These charities were established and are run by parents, some of whom lost their children to cancer. They continue their children’s legacy, doing an amazing job of advocating for children with cancer and better funding for research and aftercare.

Knit-A-Thon 2023

And a special thank you to Ciara’s mam Aggie for the amazing handmade raffle prizes (chromosomes, antibodies, cup holders and many more) and a Master class on the day! We thank Jenny Duffy (RCSI Events and Communications Coordinator) for her time crocheting with us and for us!  Thanks to Anggie’s and Jenny’s skills, there were lots of mascots to win – and many of them collected already. We much appreciate the support from the RCSI Estates and Porters who looked after us on the day.

Go Raibh Maith Agat!!!

MANY THANKS FOR YOUR BIG HEARTS!!!

Knit-A-Thon 2023


We are the Cancer Bioengineering Group, and September is a very special month for us as it is Childhood Cancer Awareness Month. Childhood cancer is the 2nd leading cause of death in children after accidents. Our group researches childhood cancer neuroblastoma, a cancer of immature nerve cells. Despite intensive multimodal treatment, as many as 1 in 5 children with aggressive neuroblastoma do not respond, and up to 50% of children that do respond experience disease recurrence with many metastatic tumours resistant to many drugs and more aggressive tumour behaviour that all too frequently results in death.

This is what we want to change! We believe that every child deserves a future, and our team of postgraduate researchers led by Dr Olga Piskareva is dedicated to strengthening our knowledge of this disease and identifying new potential ways to tackle it, as well as taking part in fundraising activities so our group and others can continue with this research.  

On Tuesday, the 19th of September, we are running a Knit-A-Thon using gold and purple yarn to mark childhood cancer and neuroblastoma, respectively. Our patterns are inspired by Neuroblastoma UK and Mr Google, indeed.

This year, we honour 4 charities that are doing an amazing job of advocating for children with cancer and better funding for research and aftercare. Therefore, the donations we receive will be split equally among The Conor Foley Neuroblastoma Research Foundation (CFNRF), Neuroblastoma UK (NBUK), Oscars Kids and Childhood Cancer Ireland (CCI). If you would like to get involved in the Knit-A-Thon and help us raise vital funds for childhood cancers, come along on the day and make a donation to these wonderful charities.

On the day, RCSI 123 SSG will #GoGold in support of this cause. Please come by to see the RCSI building lit up and share your pictures on social media with the hashtag #ChildhoodCancerAwarenessMonth to raise awareness.

Ready, Steady, Go!

Every year we manage to raise an amazing 1500-2000 euros by organising a new challenge. We are eager to surpass that target this year. All donations no matter how small are appreciated at GoFundMe.

Growing cancer cells in 3D

Hi there, Ciara here again, a final-year PhD student in our research group. I can’t believe September has rolled around again, meaning one thing: it’s Childhood Cancer Awareness Month (CCAM). In honour of this month, I would like to tell you a little bit about the childhood cancer we study in our lab and the research that I do to one day help save children from this disease. 

Neuroblastoma is an aggressive childhood cancer, with sadly only 20% of late-stage patients surviving after 5 years. Progressive disease and cancer relapse are common in neuroblastoma. This is due to standard treatment regimens not being adequate for treating high-risk patients. Current treatment also may cause a series of adverse reactions in patients. Therefore, my research focuses on developing a 3D model of high-risk neuroblastoma that models the cancer more accurately in a laboratory setting. This will act as a beneficial platform to test whether new therapies effectively fight the patients’ cancer cells, leading to better treatment options for children with neuroblastoma.  

Below is a picture of how we grow these cancerous cells on our 3D model and visualise them with fluorescent stains. When we can see them like this under a microscope, we can study how they move and grow to help us understand how to treat them. 

Here, we can see the cells growing on our 3D cancer model. This image is magnified by 200 times to be able to see the individual cancer cells. The green stain is the outside of our cancer cells, or we use the term, the cell membrane. The blue is the inside, or as some of you may know the term, the nucleus of the cell.   (It is amazing what we can see with the power of microscopes, right?) 

As you may know, every year, we support amazing charities by raising vital funds to keep the fight against childhood cancer going. Keep your eyes peeled on our Twitter for updates on what crazy activity we have committed to this year!!  

Written by Ciara Gallagher

Childhood Cancer Awareness Month 2023

Every September, we celebrate Childhood Cancer Awareness Month. This is a great opportunity to raise awareness about childhood cancer. Unfortunately, kids get cancer, too. While much research has been done to understand how cancer develops in adults, we still know very little about what exactly leads to cancer in children.

We are the Cancer BioEngineering Group led by Dr Olga Piskareva at the RCSI University of Medicine and Health Sciences. Our research focuses on neuroblastoma, an aggressive childhood cancer of immature nerves. The group has 7 PhD students developing research projects around neuroblastoma biology. One postgraduate student successfully defended her work and was awarded a PhD last month.

We are a dynamic group proud to be engaged in research, science communication and patient involvement. We do that through different initiatives. Throughout September, we will share many of them and invite you to keep following us on social media. 

Team 2023

Our projects address topics related to neuroblastoma microenvironment, cell interactions, tumour resistance and the development of new therapies. To do that, we use 3D in vitro models, identify immunotherapeutic targets and evaluate extracellular vesicles.  

We are always happy to answer questions and interact with the public. Follow us on our social media channels and read our blog to learn more about us and our research.  

We are running a fundraising event, “A knit-a-thon,” on the 19th of September. Stay tuned!

Thanks for reading, and we go ahead with neuroblastoma research! 

Experiencing Elegance: A Graduation Ceremony at the University of Siena, Italy

This blog takes you to the exciting scene of my MSc graduation ceremony at the University of Siena, Italy, completed with the prestigious laurel wreath.

I graduated during COVID-19, but there was no graduation ceremony at that time. Years later, I was invited to attend an “Alumni conference” by the University of Siena, but the plan was still unclear. When we arrived in Siena, we came across that there was a convocation ceremony tomorrow. Hold on! What? Yes, after years of waiting, it was finally taking place on June 7, 2023.

The next morning, all the former students from 48 countries came together in the University’s Grand Piazza del Duomo, where all of the Professors and sponsors, robed in their academic attire, delivered speeches that inspired and reminded us of the responsibility that comes with education, which ended in the most captivating moment of adorning us with laurel wreaths stating that “Rating your thesis attributes by authority granted to me by director I confer you the Masters Diploma in Vaccinology and Drug Development, Congratulations!”. The weight of this academic success was alleviated by our family members’ joyful yells and applause.

Walking out of the ceremony, wreathed in laurel, walking through Siena’s streets with classmates I’ve never met in person, hearing these words “Complimenti! Felicitazioni!” from commoners, I came back to Dublin with an ethereal sensation of pride and belonging that will remain with me for life. Altogether, It was a once-in-a-lifetime experience for me.

Here are some glimpses of the ceremony:

P.S.: But this was not the end. I embarked on a wet-lab MSc in RCSI Dublin. As I am typing these lines, my MSc by Research work has just been submitted for examination, marking another hallmark and opening a new chapter in my life, “the PhD journey”. The new chapter – the new challenges and opportunities!

Written by Rabia Saleem