#JournalClubwithRabia: “New Advances in Targeted Cancer Treatments: Targeting Neuroblastoma with miR-34a-Loaded Nanoparticles”

I’m excited to kick off my second-year PhD journey with a deeper dive into cancer research. This is my first blog post of the year, and I’m eager to share what’s sparking my curiosity. So, I came across a paper by Tivnan et al. (2012), which focused on the targeted delivery of microRNA-34a (miR-34a) using nanoparticles. What intrigued me most was how these nanoparticles are designed to deliver therapies straight to cancer cells. Neuroblastoma is a highly aggressive and difficult-to-treat tumour, so finding a way to target it without affecting healthy cells could be a breakthrough.

Here’s what makes this study so exciting: the team developed a nanoparticle system coated with anti-GD2, a molecule that recognizes and binds to GD2, a marker commonly found on neuroblastoma cells. Think of these GD2-coated nanoparticles as specialized delivery trucks with a precise address—they’re designed to deliver miR-34a.

Now, let’s dive into the details of miR-34a’s role. MiR-34a isn’t just any therapeutic agent—it’s a master regulator capable of influencing multiple genes involved in cell growth, survival, and blood vessel formation. By releasing miR-34a into tumour cells, this study activated pathways that induced cell death and suppressed angiogenesis, preventing the tumour from forming new blood vessels. It’s almost as if miR-34a is a conductor orchestrating a complex, multi-step attack on cancer, using the tumour’s own cellular mechanisms against it.

The Results? A Direct and Multi-Layered Attack on Tumor’s

In their mouse model, the GD2-targeted nanoparticles packed with miR-34a significantly reduced tumour growth. These “smart” nanoparticles didn’t just shrink tumors by inducing apoptosis (cell death); they also cut off the tumor’s blood supply by promoting the expression of TIMP2, an anti-angiogenic protein. Essentially, the tumor cells were directly targeted and deprived of the resources they needed to survive—a powerful one-two punch.

Where Do We Go From Here?

This study is an excellent example of how targeted therapies could evolve to tackle other types of cancer. Traditional therapies, like chemotherapy, often affect both healthy and cancerous cells, leading to significant side effects. In contrast, this targeted approach delivers miR-34a specifically to neuroblastoma cells, which could be especially beneficial for pediatric patients who need treatments that minimize harm to developing bodies.  Imagine pairing nanoparticles like these with different therapeutic targets, such as GPC2, ALK, or PDL1, or even combining them with existing treatments to boost effectiveness while minimizing side effects. For those in the field, the potential here feels like a breakthrough waiting to happen.

Written By Rabia Saleem

National PPI Festival 2024: Let’s Talk About Childhood Cancer Research

The RCSI Cancer Bioengineering Group hosted an in-person event during the National PPI Festival 2024 to share their childhood cancer research and connect with the public and patients.

We welcomed members of the public, family members of children with cancer, researchers, clinicians, and patient/community organisations on October 17th. Our past lab members and students paid a visit, too! Our group shared ongoing research on neuroblastoma biology and finding new treatments. Prof Cormac Owens from CHI brought us through the journey of clinical trials in neuroblastoma patients. We heard the heartbreaking story of the brave young man who lost his life to neuroblastoma and his parents who never gave up. This truly inspirational family founded a charity – the Conor Foley Neuroblastoma Cancer Research Foundation, to support curiosity-driven and translationally-focused research. The Foleys know very well how important it is to return happy days to kids and their families.

We thank RCSI PPI Ignite for supporting us!

Stay in touch!

September – Childhood Cancer Awareness Month, 2024

Cancer is the 2nd most common cause of death among children after accidents. 

Childhood cancer is an umbrella term for many other types of this disease. Every September, many charities, researchers and parents of children with cancer work hard to raise awareness of this cancer. You may learn more about kids with cancer, their loving families, the doctors and caregivers who look after them and treat them, the young survivors of cancer and those kids and teens who lost their battle, and the scientists who work hard to find a way to stop childhood cancer.

This year, our research team will run the Pub Quiz on September 18th, 2024, in honour of Childhood Cancer Awareness MonthAll donations will go to the Conor Foley Neuroblastoma Research Foundation (CFNRF).

If you would like to get involved in this amazing challenge and help us raise vital funds for childhood cancers, you can contribute to our fundraising page:

Congratulations to a new Dr in the house: Dr Ellen King

Huge congrats to a newly minted Dr Ellen King!  She passed her PhD viva on April 9. This is a testimony to your dedication, strong will and hard work. May this PhD be the beginning of many more successful endeavours, Ellen!

We thank examiners Prof Sally-Ann Cryan (RCSI) and Prof Joanne Lysaght (TCD) for the time and expertise they provided.

We also thank the RCSI PhD Programme for their generous support!

From left to right: Prof Joanne Lysaght, Dr Ellen King, Dr Olga Piskareva & Prof Sally-Ann Cryan

International Childhood Cancer Day – 15 February 2024

We are celebrating #ICCD2024 with a Bake Sale and a Quiz. To earn a piece of cake, you have to answer a question correctly! Have a look at some:

  • Which civilisation first described cancer?
  • Where did the word cancer come from?
  • Do children get cancer?
  • What is the most common type of cancer in children?
  • Can the Human Papillomavirus (HPV) vaccine prevent cancer?
  • Can neuroblastoma begin to develop before birth?
  • What is the name of the nerve cell in which neuroblastoma begins to grow?
  • Can a child have a genetic predisposition to neuroblastoma?
  • What % stands for the incidence of neuroblastoma: 8 or 15?
  • What % stands for the neuroblastoma-related deaths: 8 or 15?
  • Does neuroblastoma first appear in the brain?
  • What does the letter N stand for in the gene MYCN?
  • How often does childhood cancer occur compared to adults?
  • How often does hereditary cancer happen in general?
  • Do you think that children are small adults when we talk about anticancer treatment?

Knit-A-Thon 2023 Results

A wonderful day of knitting – Knit-A-Thon-2023 raised 913 euros. A massive thank you to everyone who stopped by and donated on the day and beyond. Every cent counts! The money was split evenly between our four chosen charities: The Conor Foley Neuroblastoma Research Foundation (CFNRF)Neuroblastoma UK (NBUK)Oscars Kids and Childhood Cancer Ireland (CCI). These charities were established and are run by parents, some of whom lost their children to cancer. They continue their children’s legacy, doing an amazing job of advocating for children with cancer and better funding for research and aftercare.

Knit-A-Thon 2023

And a special thank you to Ciara’s mam Aggie for the amazing handmade raffle prizes (chromosomes, antibodies, cup holders and many more) and a Master class on the day! We thank Jenny Duffy (RCSI Events and Communications Coordinator) for her time crocheting with us and for us!  Thanks to Anggie’s and Jenny’s skills, there were lots of mascots to win – and many of them collected already. We much appreciate the support from the RCSI Estates and Porters who looked after us on the day.

Go Raibh Maith Agat!!!

MANY THANKS FOR YOUR BIG HEARTS!!!

Knit-A-Thon 2023


We are the Cancer Bioengineering Group, and September is a very special month for us as it is Childhood Cancer Awareness Month. Childhood cancer is the 2nd leading cause of death in children after accidents. Our group researches childhood cancer neuroblastoma, a cancer of immature nerve cells. Despite intensive multimodal treatment, as many as 1 in 5 children with aggressive neuroblastoma do not respond, and up to 50% of children that do respond experience disease recurrence with many metastatic tumours resistant to many drugs and more aggressive tumour behaviour that all too frequently results in death.

This is what we want to change! We believe that every child deserves a future, and our team of postgraduate researchers led by Dr Olga Piskareva is dedicated to strengthening our knowledge of this disease and identifying new potential ways to tackle it, as well as taking part in fundraising activities so our group and others can continue with this research.  

On Tuesday, the 19th of September, we are running a Knit-A-Thon using gold and purple yarn to mark childhood cancer and neuroblastoma, respectively. Our patterns are inspired by Neuroblastoma UK and Mr Google, indeed.

This year, we honour 4 charities that are doing an amazing job of advocating for children with cancer and better funding for research and aftercare. Therefore, the donations we receive will be split equally among The Conor Foley Neuroblastoma Research Foundation (CFNRF), Neuroblastoma UK (NBUK), Oscars Kids and Childhood Cancer Ireland (CCI). If you would like to get involved in the Knit-A-Thon and help us raise vital funds for childhood cancers, come along on the day and make a donation to these wonderful charities.

On the day, RCSI 123 SSG will #GoGold in support of this cause. Please come by to see the RCSI building lit up and share your pictures on social media with the hashtag #ChildhoodCancerAwarenessMonth to raise awareness.

Ready, Steady, Go!

Every year we manage to raise an amazing 1500-2000 euros by organising a new challenge. We are eager to surpass that target this year. All donations no matter how small are appreciated at GoFundMe.

Growing cancer cells in 3D

Hi there, Ciara here again, a final-year PhD student in our research group. I can’t believe September has rolled around again, meaning one thing: it’s Childhood Cancer Awareness Month (CCAM). In honour of this month, I would like to tell you a little bit about the childhood cancer we study in our lab and the research that I do to one day help save children from this disease. 

Neuroblastoma is an aggressive childhood cancer, with sadly only 20% of late-stage patients surviving after 5 years. Progressive disease and cancer relapse are common in neuroblastoma. This is due to standard treatment regimens not being adequate for treating high-risk patients. Current treatment also may cause a series of adverse reactions in patients. Therefore, my research focuses on developing a 3D model of high-risk neuroblastoma that models the cancer more accurately in a laboratory setting. This will act as a beneficial platform to test whether new therapies effectively fight the patients’ cancer cells, leading to better treatment options for children with neuroblastoma.  

Below is a picture of how we grow these cancerous cells on our 3D model and visualise them with fluorescent stains. When we can see them like this under a microscope, we can study how they move and grow to help us understand how to treat them. 

Here, we can see the cells growing on our 3D cancer model. This image is magnified by 200 times to be able to see the individual cancer cells. The green stain is the outside of our cancer cells, or we use the term, the cell membrane. The blue is the inside, or as some of you may know the term, the nucleus of the cell.   (It is amazing what we can see with the power of microscopes, right?) 

As you may know, every year, we support amazing charities by raising vital funds to keep the fight against childhood cancer going. Keep your eyes peeled on our Twitter for updates on what crazy activity we have committed to this year!!  

Written by Ciara Gallagher

Childhood Cancer Awareness Month 2023

Every September, we celebrate Childhood Cancer Awareness Month. This is a great opportunity to raise awareness about childhood cancer. Unfortunately, kids get cancer, too. While much research has been done to understand how cancer develops in adults, we still know very little about what exactly leads to cancer in children.

We are the Cancer BioEngineering Group led by Dr Olga Piskareva at the RCSI University of Medicine and Health Sciences. Our research focuses on neuroblastoma, an aggressive childhood cancer of immature nerves. The group has 7 PhD students developing research projects around neuroblastoma biology. One postgraduate student successfully defended her work and was awarded a PhD last month.

We are a dynamic group proud to be engaged in research, science communication and patient involvement. We do that through different initiatives. Throughout September, we will share many of them and invite you to keep following us on social media. 

Team 2023

Our projects address topics related to neuroblastoma microenvironment, cell interactions, tumour resistance and the development of new therapies. To do that, we use 3D in vitro models, identify immunotherapeutic targets and evaluate extracellular vesicles.  

We are always happy to answer questions and interact with the public. Follow us on our social media channels and read our blog to learn more about us and our research.  

We are running a fundraising event, “A knit-a-thon,” on the 19th of September. Stay tuned!

Thanks for reading, and we go ahead with neuroblastoma research! 

Paris…Paris…

I’m Ellen, and I am a 3rd year PhD student in the Cancer Bioengineering Group. Last week I attended and presented at my first international conference, ISCT (International Society for Cell & Gene Therapy), in Paris. I spent five days in Paris with three of them at the conference where scientists, researchers and pharma professionals came from far and wide. There was a strong focus on collaboration between industry teams and academics, and it gave me a lot to think about when it comes to my own PhD and career journey as a whole.

As a soon-to-be final-year student, the next step in my career has been on my mind. Starting out, I was very sure I wanted to progress within academia and follow the “traditional” researcher route. Industry always seemed so far removed from the basic sciences, and specifically biology research roles are hard to come by in Ireland. Having the opportunity to travel to Paris and meet with such a wide range of professionals really opened my eyes to the possibility of a career in the industry. It was reassuring to see that even after leaving academia, there is a cross-over and lots of collaboration. Industry or academia? The fork in the road when it comes to this career choice is becoming lesser and lesser.

While I was in Paris, I had a lot of time to ponder the fantastic science and research that I discussed at the talks (Did you know? One adult human heart produces enough energy in one lifetime to power an 18-wheeler to the moon and back). Additionally, I could also see first-hand that the positive aspects that we associate with academia (presenting research, freedom of research topics and the conference wine receptions, of course) are also readily available as a non-academic based scientist. In fact, there is a career that has the “goodness of both”. So many academics discussed start-ups and spin-out companies developed off the back of their academic research, and there were even talks that discussed the how, what, when and where of transitioning between the two settings.

I’m so grateful that I could attend this conference. I presented my research (a project very much blended between academia and industry), got to chat to like-minded people and came home with a wealth of new knowledge. This knowledge will not only enrich my PhD project but will stand for me as my career moves from student to fully-fledged scientist. The topic of post-PhD job hunting often comes with a knot in the stomach, but seeing the exciting opportunities that are available out there has me much more excited than stressed about this next step. And now to finish this PhD so that I can take that next step 🙂

My trip became possible thanks to the Company of Biologist travel grant and support from the RCSI Department of Anatomy and Regenerative Medicine.

Written by Ellen King