Models to study neuroblastoma in the laboratory

Finding suitable research models to study disease is a big challenge for researchers around the world. In cancer research, it is essential to work with models that can recapitulate tumour characteristics as much as possible. This is important to test chemotherapeutic drugs, understand tumour behaviour and have higher chances of translating the finds from the laboratory to clinical practice.  

Multiple factors influence tumour behaviour and disease progression. The most important is the tumour microenvironment, which comprises different cells and molecules that surround the tumour and the extracellular matrix, a network of molecules that provides support to the cells in the body.  

Most cell studies in a laboratory are based on 2D cell culture models in which the cells grow in a monolayer. Although this approach has a low cost and it is easy to use, it lacks the complexity observed in the clinical scenario. It is true that no model can recapitulate all the complexity found in the body. However, scientists were able to develop interesting approaches to study different tumour characteristics with relatively good approximation1.  

Specifically for neuroblastoma, the most common solid tumour that affects children, scientists developed 3D models in which neuroblastoma cells grow interacting with the surrounding environment and with each other in a vial. Examples of 3D models include cells grown in hydrogels or scaffolds and multicellular tumour spheroids (see image below). Spheroids are formed through the self-adhesion of tumour cells growing in the form of very small balls. They can be maintained in the laboratory on their own or supported by scaffold-based platforms (jelly-like or porous materials). Scaffolds essentially support the cell resembling the extracellular matrix and surrounding tissue in the body. 

In the Cancer Bioengineering Research Group, we work with neuroblastoma models such as organoids, a more complex type of spheroid, to understand neuroblastoma migration and invasion2. Moreover, we recently shared with the research community a protocol at jove.com describing the development of a 3D neuroblastoma model using collagen-based scaffolds3.  

Time-lapse video of neuroblastoma organoids’ growth. Accompanying experimental data published in Gavin et al., Cancers 2021. Source: the Cancer Bioengineering Research Group 

These models have the potential to advance drug tests performed in the laboratory providing better clinical translation, ultimately contributing to improving the quality of life and survival of children diagnosed with neuroblastoma.  

The work with 3D models at the Cancer Bioengineering Research Group is supported by the Irish Research Council, the Conor Foley Neuroblastoma Cancer Research Foundation, Neuroblastoma UK and National Children’s Research Centre. 

Written by Luiza Erthal

References 

1. Nolan, J. C. et al. Preclinical models for neuroblastoma: Advances and challenges. Cancer Lett. 474, 53–62 (2020). 

2. Gavin, C. et al. Neuroblastoma Invasion Strategies Are Regulated by the Extracellular Matrix. Cancers 13, 736 (2021). 

3. Gallagher, C., Murphy, C., O’Brien, F. J. & Piskareva, O. Three-dimensional In Vitro Biomimetic Model of Neuroblastoma using Collagen-based Scaffolds. J. Vis. Exp. 62627 (2021) doi:10.3791/62627. 

A 30km Dublin Mountain Way in A Day

And the story began with a meeting of fantastic 7 at the very beginning of Dublin Mountains Way in Tallaght at 6.30 am on September 25th. The spirit, cheer, backpacks with essentials and branded tops were on, Strava was launched and we swiftly headed off.

It was quiet, dark and cheering. No one was on the streets, a few cars passed by. We took towards Bohernabreena reservoir through the sleepy estates of Tallaght, sensing the sunset. Clouds were low and the highest peaks in the Dublin Mountains including Seefingan, Corrig and the highest, Kippure were in the mist. Nevertheless, we were full of energy and hopes to see it later.

Cheat chats and jokes were here and there, we walked in small dynamic groups recalling our pre-covid life and stories that happened during the lockdown. A mix of newbies and maturating research students. We met some in person for the first time since the COVID restrictions admitting that our visual senses are extremely important to memorise a person and recognise him/her on the next occasion. We were enjoying this face-to-face communication and our team re-connection.

The first 8 km flew in a flash. We stopped for our breakfast in Dublin Mountains. The grass was wet, the sky was blue. Mountains started to draw their shape through the clouds. Yoghurts, fruits, bars immediately disappeared in our stomachs. Everyone was happy to lighten their backpack. Every little helps!

A few plasters were glued, and we continued on at a very good pace. The sky was changing with sunny spells. We travelled around Spinkeen and Killakee at their base doing up and downhills and verifying our route with the hiking app. At the 20 km mark, we stopped for lunch. Sandwiches, grapes, mandarines and sweets were shared and eaten and then polished with chocolates from the recent Nadiya’s home trip. Jellies left untouched.

At 25 km, our blisters reminded us of being humans. Our pace slowed down and we started a very mild ascent to Tibradden Mountain leaving the Pine Forest or Tibradden Wood behind. We climbed further to Fairy Castle, the highest point on the Dublin Mountains Way (537m). Throughout the entire way, Dublin showed its best views of the Phoenix Park and the Pope Cross, house roofs, Aviva Stadium, two Chimneys, Dublin Port… The scenery was fascinating and breathtaking. We saw Howth and Dun Laoghaire, Sugar Loaf… We met groups of Germans, French, Irish and many others.

At Three Rocks Mountain/Fairy Castle, we started our descent and entered Tiknock forest. This part was steep. We crossed the Gap Mountain Bike Adventure Park to reach Glencullen. Got lost at the end but just for a sec and reached the Glencullen junction at 2.30pm. It took us 8 hours with walks and stops from start to finish to complete the 30 km challenge in a day. We got tired but felt happy and satisfied.

We aimed to raise awareness of childhood cancer in general and neuroblastoma in particular as well as honour children with cancer, their parents, siblings, friends and careers, doctors and nurses, volunteers in the hospitals and researchers working to find cancer weaknesses and develop new treatments that are friendly to patients and target cancer aggressiveness.

We will count our tally in the coming days and transfer it to three wonderful charities that support childhood cancer research.

We thank everyone who supported this challenge!

Go raibh maith agat!

Dublin Mountain Way in A Day, September 25th 2021

Here are our plans. This year we have upped the challenge, taking on the Dublin Mountain’s Way in a Day ⛰ We will hike through the Dublin Mountains from Tallaght to Glencullen, and maybe even all the way to Shankill on September 25th! Our challenge is not only to do #DMW in a Day & support three wonderful charities CMRF Crumlin/National Children’s Research Centre, Neuroblastoma UK and the Conor Foley Neuroblastoma Cancer Research Foundation but also beat our past fundraising records! If we raise 2K+, we’ll do 30km in a day. If 3K+ then 42km! Can u challenge us?  All funds raised will go to the 3 selected charities. Every donation big or small is hugely appreciated!

Please support us by donating to our Gofundme

https://gofund.me/ec59f131

Childhood Cancer Awareness Month 2021

Every 100th cancer patient is a child. Cancer is the 2nd most common cause of death among children after accidents. 

Childhood cancer is an umbrella term for many other types of this disease. Every September, many charities, researchers and parents of children with cancer work hard to raise awareness of this cancer. You may learn more about kids with cancer, their loving families, the doctors and caregivers who looking after them and treating them, the young survivors of cancer and those kids and teens who lost their battle, and the scientists who working hard to find a way to stop childhood cancer.

This year our research team will hike Dublin Mountain Way in One Day on the 25th of September 2021 whatever the weather in honour of Childhood Cancer Awareness Month. For every one euro donated to research only 1 cent of this goes to ALL childhood health conditions including cancer. Therefore, the donations we receive will be split equally among some wonderful children’s charities. These charities include the Conor Foley Neuroblastoma Research Foundation (CFNRF), Neuroblastoma UK (NBUK), Children’s Research & Medical Foundation (CRMF) Crumlin.

If you would like to get involved in this amazing challenge and help us raise vital funds for childhood cancers, you can contribute to our fundraising page:

Remote Research Projects

Regardless COVID19 pandemic, we continue to host undergraduate students from various Universities for their research projects. Two students, Carla and Chris, from the Technical University of Dublin, carried out BSc projects remotely. Having in-house datasets and many more published in open access, their projects were focused on bioinformatics, re-analysing them and giving a second look. Both Carla’s and Chris’ research received the highest score in their classes. Many congratulations – well deserved!! We wish to thank both for their kind words and willingness to share their story.

Chris Sheridan, the final year student in Biomolecular Science at the Technical University of Dublin, 2021

My project concerned analysing the exosomal miRNA expression of neuroblastoma cells in response to chemotherapy. Though the project was not too large, it certainly was the largest project I have ever taken part in. The work Dr. Piskareva and her team are conducting is so interesting and novel that I felt very fortunate to be participating in such an exciting field. Despite the novel and complex nature of the topic, the project was extremely engaging, allowing for an opportunity to learn new valuable research and data analysis skills. I was able to get very useful and helpful feedback regularly from everyone on the research team, where there was a very welcoming and positive attitude. This made the topic seem less daunting and my goals more achievable. I was really happy with my results, and I am excited to see where they may lead in the future. Some of the miRNAs identified in the analysis may represent potential biomarkers or therapeutic targets for high-risk neuroblastoma patients. As I have yet to experience any lab-based research, it was cool to see the team’s approaches and applications of lab techniques and analysis strategies to see how research is conducted in the “Real World” after seeing these topics before only in lecture notes. Overall, the project was challenging but very rewarding and enjoyable. Throughout the project, the overall experience, the excitement of the results coming together, and the realisation that I may have something to contribute to this field of research cemented the idea in me that this is certainly the path I wish to pursue in science and for that, I would like to thank Dr. Piskareva and her team for such a positive and educational experience during my time with them.

Carla Tejeda Monné, the final year Technological University of Dublin Biomolecular Science Student, specialising in Biotechnology, Therapeutics, and Drug Development, 2021

During my final year project, I had the unique and amazing opportunity to work under the supervision of Dr. Olga Piskareva. The purpose of my thesis was to assess the clinical significance of Tumour Necrosis Factor Receptor Superfamily Member 1B and Member 4 (TNFRSF1B and TNFRSF4) in neuroblastoma patients. I accomplished this by analysing the gene profiles of several tumours using bioinformatic tools. In addition, I investigated the potential of microRNAs as therapeutic agents for neuroblastoma treatment. I thoroughly enjoyed carrying out this research project, and I hope the findings from my thesis can aid future research into the pathogenesis of neuroblastoma and the development of effective treatments for these children.

Best of luck to Chris and Carla in their next endeavour!

Sparkles of A Researcher Day

Once I mentioned the importance of the publication track record for a career in science. My team has been productive despite the COVID pandemic. Two review articles were published.

The first was a review written by Tom and published in Cancers focusing on the small extracellular vesicles produced by cancer cells that can transfer various growth signals to the tumour microenvironment aka neighbourhood and promote tumour expansion. The signal in focus was a protein called epidermal growth factor receptor (EGFR). It contributes to the healthy fitness of many different cells in the body. However, many cancer cells produce an excess of this protein giving them an advantage of growth over normal cells. Increased EGFR can be seen in breast, lung, glioblastoma and head and neck cancers.

Cancers 202012(11), 3200; https://doi.org/10.3390/cancers12113200

The second review has been published in Journal of Personalized Medicine on March, 16th. Originally, it was a small review project for Nadiya, a medicine student, last summer. However, it became a big one with all data systematically collected, analysed and condensed. The focus of this review was on Retinoic Acid (RA), widely known as Vitamin A and its role in neuroblastoma. RA plays a vital role in human development. The main feature of RA is to push neuroblastoma cells to become neuron-like cell stopping their aggressiveness and cancer fate. So, we wanted to know more about the ongoing research both in the labs and the clinic. We reviewed primary research articles reporting basic and translational findings as well as clinical trials. Hopefully, it would help other researchers to get a full picture of this topic and a structured resource of experimental models and drugs tested.

J. Pers. Med. 202111(3), 211; https://doi.org/10.3390/jpm11030211

Annual NCRC Symposia 2020

As the year comes to an end, you are looking back and seeing all achievements in a different light, a light of the COVID glaze. Lab research was at bay for a while, challenges to return and re-start experiments, no scientific meetings in the traditional format where you build your new collaborative net at coffee breaks. Despite all, the team has expanded and we welcomed Ellen and Erin in October.

The NCRC Winter Symposia is a lovely way to wrap the year putting together all hard work and look at the progress done so far. We have an exciting project that has two arms: a blue-sky science and a translational. Working together John and Tom were able to generate promising results on understanding how small membrane-bound vesicles or exosomes can send signals from neuroblastoma cells to cells responsible for new blood vessels formation. They developed a protocol to scale up the production of exosomes, isolate them and characterise. We have a dataset on what these exosomes carry on and now can test how they promote new blood vessels formation. Indeed, more left to do but knowing the direction makes this journey meaningful.

Hallmarks of Research

Research is a fascinating journey no doubt. Inquisitive minds try to solve burning puzzles. It takes time. Some puzzles are more complected than the others. One of the hallmarks is the conversion of the resolved puzzle into a scientific story to tell to your peers.

We write and publish these stories. The publishing is another caveat that often makes your story sharper and neater. However, while you are in the process you feel that the mission is impossible.

Delighted to see that one of the missions is completed – a great hallmark for John which coincided with his new research adventure starting in a few days. This is his first first author paper! It is not tautology! It is his first original research paper where he is the first author. This position is a success measure in a research career. His teamwork skills secured him another few original papers. Well done John! Well deserved!

This study is an excellent example of the many roles that small RNA molecules such as miR-124-3p can play in neuroblastoma pathogenesis. The ability of this miRNA to work together with standard chemo drugs can be exploited further in the development of new anticancer therapeutics targeting relapse and drug-resistant tumours.

Hot Chocolate Morning In Aid of ICCD2019

Across countries and continents, we are celebrating International Childhood Cancer Day (ICCD).We do it to raise awareness tto raise awareness of childhood cancer, its consequences for children and their parents and make it as a priority for Governments and research.

My team research is focused on neuroblastoma biology. This is a solid tumour of undeveloped nerves. Some forms of neuroblastoma spread quickly and become very aggressive and challenging to treat. We are searching for the weaknesses that can be targeted with drugs.

Ciara, John, Tom, Nele and Olga

Today, we team up with Amorino to run the Hot Chocolate Morning to raise funds for Childhood cancer research charities – Children’s Medical Research Foundation/National Children’s Research Centre and the Conor Foley Neuroblastoma Cancer Research Foundation. Research advances our knowledge and helps to develop new treatments.

A guessing game was a part of the event. Everyone had a chance to guess how many marshmallows fitted in the cell culture flask T75. The guesses ranged from as low as 95 to as high as 500. Fortunately, one of the participants gave an absolutely correct answer. Micheal Flood put on 173 and won. Her fantastic ability to guess is incredible! Congratulations!!! Well done to all!

We raised 698.91 Euros for childhood cancer research! We thank everyone who came along and supported the Hot Chocolate Morning & the International Childhood Cancer Day 2019!

Many special thanks go to Amorino for delicious Italian hot chocolate & tasty bites contributors!

“Please visit us in St Stephens” Green”

September is Childhood Cancer Awareness Month!

Today marks the start of Childhood Cancer Awareness Month.

Three girls fountain in Mainz Germany 

The cause of childhood cancers is believed to be due to faulty genes in stem cells that give rise to nerves, skin, blood and other body tissues. For some unknown reasons, the faulty genes can sit quiet and show their ‘bad’ character after birth and programme the cells into cancer cells.
So, there is no evidence that links lifestyle or environmental risk factors to the development of childhood cancer, which is opposite to many adult’s cancers.

Every 100th cancer patient is a child. Cancer is the 2nd most common cause of death among children after accidents.

Children are not little adults and so their cancer. Some childhood cancers have a good outlook and successful protocol of treatments. However, some of the cancers do not respond to the known drugs, or if respond cancer cells find the way to develop resistance and come back being more aggressive. Among theme are some forms of brain tumours, neuroblastoma and sarcomas; cancers developing in certain age groups and/or located within certain sites in the body, along with acute myeloid leukaemia (blood cancer). Children with a rare brain cancer – diffuse intrinsic pontine glioma survive less than 1 year from diagnosis. Children with soft tissue tumours have 5-year survival rates ranging from 64% (rhabdomyosarcoma) to 72% (Ewing sarcoma). Less than50% of children with the aggressive form of neuroblastoma will live beyond 5 years with current treatment strategies.

For majority of children who do survive cancer, the battle is never over. Over 60% of long‐term childhood cancer survivors have a chronic illness as a consequence of the treatment; over 25% have a severe or life-threatening illness.

The most common types of childhood cancer are:

  • Leukaemia and lymphoma (blood cancers)
  • Brain and other central nervous system tumours
  • Muscle cancer (rhabdomyosarcoma)
  • Kidney cancer (Wilms tumour)
  • Neuroblastoma (tumour of the non-central nervous system)
  • Bone cancer (osteosarcoma)
  • Testicular and ovarian tumours (gonadal germ cell tumours)

Please see a short video The Childhood Cancer Ripple Effect created by St. Baldrick’s Foundation.